Search results for "Molecular moments"

showing 5 items of 5 documents

Full configuration interaction calculation of BeH adiabatic states.

2008

An all-electron full configuration interaction (FCI) calculation of the adiabatic potential energy curves of some of the lower states of BeH molecule is presented. A moderately large ANO basis set of atomic natural orbitals (ANO) augmented with Rydberg functions has been used in order to describe the valence and Rydberg states and their interactions. The Rydberg set of ANOs has been placed on the Be at all bond distances. So, the basis set can be described as 4s3p2d1f3s2p1d(BeH)+4s4p2d(Be). The dipole moments of several states and transition dipole strengths from the ground state are also reported as a function of the R(Be-H) distance. The position and the number of states involved in sever…

ChemistryConfiguration interactionsGeneral Physics and AstronomyBond lengthsBeryllium compounds ; Bond lengths ; Configuration interactions ; Ground states ; Molecular moments ; Potential energy surfaces ; Rydberg states ; Vibrational statesRydberg statesPotential energyFull configuration interactionGround statesUNESCO::FÍSICA::Química físicaDipolesymbols.namesakeAtomic orbitalBeryllium compoundsPotential energy surfacesRydberg formulasymbolsMolecular momentsVibrational statesPhysical and Theoretical ChemistryAtomic physicsGround stateAdiabatic process:FÍSICA::Química física [UNESCO]Basis setThe Journal of chemical physics
researchProduct

Electronic excited states of conjugated cyclic ketones and thioketones : A theoretical study

2002

Absorption spectra of a series of cyclic conjugated ketones and thioketones have been computed at the multiconfigurational second-order multistate perturbation level of theory, the CASSCF/MS-CASPT2 method. Excitation energies, transition dipole moments, oscillator strengths, and static dipole moments are reported and discussed for excited states with energies lower than ≈ 7–8 eV. The main bands of the spectra have been assigned and characterized in most cases for the first time. The spectroscopy of the different systems is compared in detail. Thioketones in particular have low-energy and intense ππ∗ transitions which suggest corresponding enhanced nonlinear molecular optical properties. Add…

Molecular MomentsAbsorption spectroscopyChemistryOrganic CompoundsTransition MomentsGeneral Physics and AstronomyOscillator StrengthsExcited StatesConjugated systemSCF CalculationsSpectral lineUNESCO::FÍSICA::Química físicaDipoleExcited stateTheoretical chemistryPhysical and Theoretical ChemistryAtomic physicsOrganic Compounds ; Excited States ; SCF Calculations ; Molecular Moments ; Oscillator Strengths ; Transition MomentsSpectroscopy:FÍSICA::Química física [UNESCO]Excitation
researchProduct

Local properties of quantum chemical systems: the LoProp approach.

2004

A new method is presented, which makes it possible to partition molecular properties like multipole moments and polarizabilities, into atomic and interatomic contributions. The method requires a subdivision of the atomic basis set into occupied and virtual basis functions for each atom in the molecular system. The localization procedure is organized into a series of orthogonalizations of the original basis set, which will have as a final result a localized orthonormal basis set. The new localization procedure is demonstrated to be stable with various basis sets, and to provide physically meaningful localized properties. Transferability of the methyl properties for the alkane series and of t…

Polarisabilitybusiness.industryChemistryGeneral Physics and AstronomyBasis functionQuantum chemistryQuantum mechanicsddc:540Theoretical chemistryPhysics::Atomic and Molecular ClustersPartition (number theory)Molecular momentsOrthonormal basisStatistical physicsSet theoryPhysical and Theoretical ChemistrybusinessMultipole expansionQuantum chemistryBasis setSubdivisionThe Journal of chemical physics
researchProduct

Full configuration interaction calculation of singlet excited states of Be3

2004

The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of …

Atomic clustersElectron correlationsIonisation potentialGeneral Physics and AstronomyFull configuration interactionBeryllium ; Configuration interactions ; Excited states ; Orbital calculations ; Ground states ; Ionisation potential ; Molecular configurations ; Transition moments ; Quadrupole moments ; Molecular moments ; Electron correlations ; Atomic clustersPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Basis setElectronic correlationChemistryConfiguration interactionsExcited statesPhysics::Physics EducationMolecular configurationsTransition momentsUNESCO::FÍSICA::Química físicaOrbital calculationsGround statesDipoleExcited stateQuadrupoleQuadrupole momentsMolecular momentsBerylliumAtomic physicsIonization energyGround stateThe Journal of Chemical Physics
researchProduct

Theoretical absorption spectrum of the Ar–CO van der Waals complex

2003

The three-dimensional intermolecular electric dipole moment surface of Ar–CO is calculated at the coupled cluster singles and doubles level of theory with the aug-cc-pVTZ basis set extended with a 3s3p2d1f1g set of midbond functions. Using the rovibrational energies and wave functions of our recent study [J. Chem. Phys. 117, 6562 (2002)], temperature-dependent spectral intensities are evaluated and compared to available experimental data. Based on the theoretical spectrum, alternative assignments of the experimentally observed lines in the fundamental band of CO around 2160 and 2166 cm−1 are suggested. Thomas.Bondo@uv.es

Coupled Cluster CalculationsAbsorption spectroscopyGeneral Physics and AstronomySpectral Line IntensitySpectral linesymbols.namesakePhysics and Astronomy (all)Argon ; Carbon Compounds ; Quasimolecules ; Molecular Moments ; Coupled Cluster Calculations ; Rotational-Vibrational States ; Spectral Line Intensity ; SpectraQuasimoleculesPhysics::Atomic and Molecular ClustersArgonPhysics::Chemical PhysicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Rotational-Vibrational StatesBasis setMolecular MomentsChemistryIntermolecular forceRotational–vibrational spectroscopySpectraCarbon CompoundsUNESCO::FÍSICA::Química físicaElectric dipole momentCoupled clusterPhysics::Space Physicssymbolsvan der Waals forceAtomic physics
researchProduct